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Symbol 

A 

C 

D 

E 

f 

g 

h 

k 

L 

P 

Q 

q"' 

r 

S 

T 

V 

X 

Z 

DEFINITION OF SYMBOLS 

Definition 

Area, ft2 

Constant 

Diameter, f t  

Emissivity factor,  dimensionless 

Function 

Constant 

Convection heat transfer coefficient, Btu/hr ft2 ' R 

Thermal conductivity, Btu/hr f t  R 

Length, f t  

Per imeter ,  f t  

Rate of heat t ransfer ,  Btu/hr 

Internal heat generation, Btu/hr f t3  

Constant, 

Length along surface,  f t  

Temperature,  ' R 

Volume, ft3 

Distance, f t  

5h 
2rrETd 

h3/2 

M356 V 



f ""' 

Symbol 

DEFINITION OF SYMBOLS (Concluded) 

Definition 

I3 Dimensionless variable,  T/T 
0 

h i /e 

A Function 

0 

<h Function 

Stefan-Boltzmann Constant, 0. 1714 X lo -*  Btu/hr ft2 O R 4  

Subscripts 

L 

0 Condition at origin 

S Condition of surroundings 

1 Station one 

2 Station two 

Condition at a distance L from origin 
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TABLES AND GRAPHS OF FUNCTIONS NECESSARY FOR 
SOLVING NONLINEAR HEAT TRANSFER CONSTANT AREA 

F I N  PROBLEMS WITH EXAMPLES ON THEIR USE 

SUMMARY 

The two functions describing the solution to the nonlinear constant area 
fin one-dimensional heat  t ransfer  problem are evaluated and presented by 
tables and graphs. 

The use of the tables and graphs is demonstrated by considering severa l  
sample problems. 

INTRODUCTION 

The differential equation describing the one-dimensional steady-state 
temperature  distribution and heat  flow under the three  modes of heat t ransfer  
and with heat generation was investigated. It was shown that the constant-area 
rod  o r  fin case  with temperature-dependent physical propert ies  and heat gene- 
ration could be solved exactly. The solution, however, has  to be determined 
separately for  each case  depending on the functions describing the dependence of 
the physical properties and the heat generation on temperature .  When the physi- 
cal propert ies  a r e  constants and the heat generation p e r  unit volume a )  i s  con- 
stant,  b )  var ies  l inearly with temperature,  c )  is proportional to the fourth power 
of temperature,  o r  d)  var ies  according to a combination of the three cases  
above, the solution leads to the definition of two functions of parametr ic  nature,  
Each function has four parameters  that a r e  dependent on the boundary conditions. 

The purpose of this repor t  is to present  the two functions mentioned 
above in tabulated and graphic fo rms  suitable f o r  solving nonlinear heat  t ransfer  
problems. 
ber of numerical  examples. 

The use  of these functions will be i l lustrated by considering a num- 

- 
I. Shouman, A.  R. : Nonlinear Heat Transfer  and Temperature  Distribution 

Through Fins  and Electr ic  Filaments of Arbi t rary Geometry with Tempera- 
tu re  Dependent Proper t ies  and Heat Generation, NASA Technical Note D- 
4257, 1968. 
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THE DIFFERENTIAL EQUATION A N D  ITS SOLUTION 

The mathematical analysis of this problem w a s  previously covered;2 
however, to make this report as useful as possible for the reader the differen- 
tial equation and its solution are briefly stated. The differential equation de- 
scribing the steady-state, one-dimensional heat flow through a constant-area 
rod or fin with constant thermal properties and without heat generation is 
written as: 

hP  ( T 4 - T 4 )  -- ( T - T  ) = O  d2T o E P  
dx2 kA S k A  S 
- -  

where 

A 

E = emissivity of the f in  surface. 

h = convection film coefficient. 

k = thermal conductivity of fin material. 

P = fin perimeter. 

T = fin temperature. 

T = equivalent surrounding temperature. 

Introducing 8 = T/To where T is the temperature a t  

= cross-sectionel area of f in  perpendicular to heat flow direction. 

S 

0 

x = o ,  t; = ( 2 0 ; 2 3 ) +  x and r = 5h 9 2oET 3 
0 

equation ( I) can be writ ten 

d2e 5 - - - ( e 4 -  8:) - r(e - e ) = o  . dt;2 2 S 

Integrating once gives 
. . .  - 

2. Ibid. 
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( - - ) 2  = O 5  - 50 4 8  + r ( B 2  - 2eS0) + C . 
S 

Choosing the origin where the temperature gradient is known and assuming 

= g gives the integration constant 

C = g + 5 e 4  - i + r ( 2 o s  - i) . . 
S 

The solution to equation ( 3 )  follows directly as 

A 

The positive and negative signs in equation ( 4) correspond respectively to the 
cases where 8 increases o r  decreases with increasing t;. 

If t@ and A are defined as 

CO 

@ ( 0 ,  es, r ,  C) = J' [ 0 5  - 50 0 + r ( 0 2  - 20 0 )  + de ( 5) 
S S 

0 

and 

the solution to equation ( 4) becomes 

S = +( i, B S ,  r, C) - Os, r, C) 

when 0 increases with t; increasing and 

S = A( I, O s ,  r ,  C) - A ( 0 ,  OS, r, C) 

when 0 decreases with t; increasing. 

M356 3 



EVALUATION OF THE FUNCTIONS AND A 

Introducing the variable A = 1/8, equation ( 5) can be written as 

A 

J S 3 S S 
+.(A,  e , r ,  C )  = -  

0 

[I - 58 * h4 + rh3( I - 28 A) + C A ~ ]  -‘Iz d(h3/2) , 

( 9) 

This form can be used when g > 0, and the integral can be determined to any 
desired accuracy by using A3’2 as the independent variable. When g = 0 ,  a 
singularity exists at h = I; however, integration by par ts  leads to the following 
form : 

Equation (i0) is suitable fo r  the determination of + except when 8 = 1. For  

8 = 1 and g > 0, equation ( 9) can be used. = I and g = 0, equation 

( 10) can be used. However, it can be seen that for  A = I, 8 = i, and g = 0,  
Q, is infinite. 

S 

For  8 
S S 

S 

When g > 0,  A can be calculated directly using equation ( 6) , but for  
g = 0 the argument has  a singularity at 8 = I. Integrating by par t s ,  the follow- 
ing equation is obtained: 

4 M356 



Equation 11) is suitable for  the determination of A except when O S  = I. 

8 = I and g = 0 , equation ( 6) can be used. 

can be used; however, it can be seen that for  8 = I ,  8 = I and g = 0,  A is 
infinite. 

For  

For OS = I and g = 8 , equation 11) 
S 

S 

A digital computer program f o r  evaluating the functions @ and A was 
written by James  W. Pr ice  of the Applied Research Branch, George C. 
Marshall Space Flight Center. 
f igures,  and it should be mentioned that to maintain such accuracy, the interval 
of numerical integration has to be decreased in the neightborhood of 8 = I. The 
function 6, is tabulated in Table I and the function A is tabulated in Table 11. 
The function @ is plotted in Figures I through 55 in the most  suitable form for 
solving problems, as will be illustrated later. Similarly, the function A is 
plotted in Figures 56 through 150. 

The functions w e r e  evaluated to s ix  significant 

Interpolat ion 

The methods that are we l l  known for  tabulated date a r e  not discussed 
Linear here ,  nor a re  there any aids provided in the tables for  interpolation. 

interpolation has  good accuracy for  small  values of h and 8. 
hood of h or 8 equal unity, l inear interpolation of @ and A is not accurate; how- 
ever ,  linear interpolation of a2 is quite accurate. 

In the neighbor- 

The Neighborhood of 6= 1 for g = 0 and 8, = 1 

To car ry  the solution further in the neighborhood of 8 = I for  g = 0 and 
8 = I ,  ' the  value @ is evaluated for  G I ,  which is in the neighborhood of unity. 

Substituting for the different parameters  in equation ( 4) , 
S 

and 

From equation 12 , it can be shown that 

M356 5 



For 8 in the neighborhood of unity, equation ( 14) gives 

Similarly, under the same conditions, equation ( 13) yields 

1 - 0  In  - 1 
(10 + r ) I  i - 01 Ah = 

THE MINIMUM MASS FIN 

The problem of the minimum mass  dissipating fin without heat genera- 
tion was previously ~ o n s i d e r e d , ~  and it was shown that for  a rectangular mini- 
mum mass  fin 

+(I, B S ,  r, C )  - + ( A L ,  e s ,  r ,  C )  

3 4  - 50 4~ 4 + r ~ ; ( 1  - 28 A )+CA;I 

[ I  - 258 4 h  4 +  2rh 3 ( 2  - 50 h ) +  6 C h  5 ]  
2 hL S L  S L  - -  - -  
3 S L  L S L  L 

Both equations ( 17) and ( 18) were solved utilizing the same computer program 
as fo r  evaluating a. The resul ts  are shown in Table 111. 

3. Ibid. 

6 M356 



The same analysis can be used fo r  the fin receiving heat o r  the dissipat- 
ing fin with internal heat generation resulting for  a rectangular minimum m a s s  
fin: 

A( I, e S ,  r, C )  - A( eL, B S ,  r, C )  

0 , [ 0 2  - 50 0 + r(0: - 2es0,) + CI1l2  
2 S L  
3 [0:- 250 4~ 

- - -~ - 
+2r(20: - 50 0 ) + 6 C ]  S L  S L  

and for  a circular minimum m a s s  fin 

- 0  3 5 - - e 4 0  145 + r ( 4 0 ~ - = e  e )+-c 17 * 

2 L  6 S L  3 S L  3 

However, on examining both equations ( 19) and (20 )  it can be seen 
that the only solution is the trivial solution 0 

configuration for  the fin receiving heat o r  dissipating heat with internal heat 
generation. 

= 1. Hence, there is no optimum L 

NUMER I CAL EXAMPLES 

In the follow-.ig, several  sample problems are consJe red  to illustrate 
the use of the tables and graphs for  solving problems. It should be mentioned 
that to obtain numerical answers to a nonlinear differential equation, even when 
it is formally solved, i s ,  unlike the l inear equation, a tedious process as we 
shall  illustrate. 

The tabular data is in the form of dimensionless variables which can be 
used with any system of units. 
amples I through 6 are in customary American measure and examples 7 and 8 
use the International System of units. 

To illustrate the use of these variables,  ex- 

M356 7 
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Infinite Radiating Rod 

Example I. An infinite rod of two inches diameter has one end main- 
tained at 1500"R and the other end insulated at infinity. The mater ia l  of the 
rod has a thermal conductivity, k ,  of 50 Btu/hr f t  "R. Assuming that the rod 
dissipates heat to its surroundings by radiation only, that the equivalent sink 
temperature of the surroundings is 500"R, and that the emissivity is unity, the 
temperature of the rod must  be determined at distances of I,  2 ,  3, and 4 feet 
from the heated end. 

Solution. For infinite fin T = T , 
0 s  

- a  ---  500 - 0.3333 . 0 . - -  
*.  Ti  I -  1500 

Using the tables, from Table 1-1-7 for  8 = 1, g = 0 and 11 = 0.3333, @ i  = 
0. 1292. 

S 

Ax 2 x 0. 1714 x x 2oEPT 
A@ =( 5 M  O" ) I" AX = [ 5 X 50 X 0 . 5  

= 0.2028AX . 

The following table summarizes the resul ts  obtained using Table 1-1-7. 

1 0.2028 0. 3320 0.6029 829.4 

2 0.4056 0. 5348 0.7718 647. 8 

3 0.6084 0.7376 0. 8732 572. 6 

4 0. 8112 0. 9404 0.9312 536.9 

Finite Rod With Radiation Only 

In all of the following examples a two-inch diameter rod one foot long 
was used made of a mater ia l  having a thermal conductivity k of 50 Btu/hr f t  " R. 
The rod exchanges energy with its surrounds by radiation only, and the emis- 
sivity is unity. 

8 M356 



Example 2. One end of the rod w a s  maintained at 1500"R and the 
The temperature of the equivalent surrounding sink temperature is 0"R. 

second end of the rod and the rate of heat dissipation must  be determined when 
the second end is insulated and noninsulated. 

Solution. 

a. For an insulated end, g = 0. 

2aEPT 2aEPT 

)< 1 x AL3/2 
= r x  0.2714 x lo-* x 12 x ( 1500) I 5 x  50 X 0. 5 2 

= I. 038 A:/' 

This is a l inear relationship in the t; and A 3/2 plane. This line, which 
L L 

represents  the locus of the solution to the problem, when superimposed on 
Figure I intersects the line r = 0,  g = 0 and 0 = 0 at A;/' = 0. 526 and gives 

A The temperature at the second end of the rod when insulated is 

calculated to be 977. 4"R. 
ing relationship is used. 

S 

= 0.6516. L 
To calculate the rate  of heat dissipation, the follow- 

Q=kA($) 
x = L  

which can be written as 

M356 

Substituting for  the insulated end case  gives 

Q = 1620.0 Btu/hr . 
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b. To solve for the case when the second end of the rod is not 
insulated, the intersection of the line t; 

l ines for r = 0 and 8 = 0 provides one relationship between g and h 
S L' 

complete the solution, use the fact that 

= I. 0538 A 3/2 with the constant g L L 
To 

5kA d8 
g =  2 a E P T 3  0 (.),=, 

and 

= oEAT 0 = kATo(f!)x=o 

to give 

5crEAT: 

g =  2kP 

Substituting for numerical values gives 

g = 0.0121 h L 

Using these two relationships yields the answer h 3/2 = 0. 5185 and g = 0.0032,  

which gives the temperature at the second end of the rod to be 968.1"R and the 
ra te  of heat dissipation to be 1625.4 Btu/hr. 

L 

Example 3. One end of the rod is maintained at 1500"R and the equiva- 
lent surrounding sink temperature is 500"R. Determine the temperature at the 
second end and the ra te  of heat dissipation for  both the insulated and noninsulated 
cases. 

Solution. 

a. Insulated end: 

The intersection of the line t; = I. 0538 with the r = 0,  g = 0 L 

L' lines fo r  different values of 8 provides one relationship between 0 

The second is 8 = Ts/TL x T /T = 0.3333 OL. Using both of these relation- 

ships gives the required answer of 8 = 0.0507 and AL = 0.6575, which yields 

and h 
S S 

S L o  

S 

10 M356 
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the temperature of the insulated end to be 986.3"R and the rate of heat dissipa- 
tion to be 1595. 4 Btu/hr. 

b. Noninsulated end case: 

The intersection of the line 5, = I. 0538 with the constant g 

l ines at r = 0 for  different 8 provides one relationship between 8 s Y  AL, and g. S 

S 
The second relationship is 8 = 0.3333 BL. 

relationship is necessary,  and that is 

To complete the solution a third 

= uEA(T 0 - T i )  = kAT o (a) dx 
x =  0 x = o  

which leads to 

5aEATL 
A: ( i -  e 4 ) 2  . g =  2kP S 

Substituting for the numerical values gives 

g =  0.0121 A 3 ( i  - 84)  . L S 

Using these three relationships gives the a n s w e r  k3i2 = 0. 5265, 

8 = 0. 5112, and g = 0.0029, which yields the temperature at the second end 

of the rod to be 978. i " R  and the rate of heat dissipation to be 1600.4 Btu/hr. 
S 

Example 4. One end of the rod is maintained at 1500"R and the other 
end at 1200"R, and the equivalent surrounding temperature is 600"R. Deter- 
mine the minimum temperature along the rod and its location. 

Solution. Assume the minimum temperature section is located Ll from 
the 1500'R end and & from the 1200"R end. 
temperature T that would exist at an insulated end is determined as outlined 

in  example 3. Similarly, T is determined for different h. The solution to 

the problem is T = T . Following this procedure the minimum temperature 

is calculated to be 1137" R, and it occurs  0.64 feet  from the 1500"R end. 

For different values of L, the 

0 1  

02 

0 1  0 2  



Example 5. One end of the rod is maintained at 1500"R and the second 
end at 800°R, and the equivalent surrounding temperature is 600"R. The rate 
of heat dissipation from the 1500"R end is to be determined. 

Solution. If it is assumed that one end of the rod is maintained at 
1500" R and the other end is insulated, the temperature at the insulated end is 
found to be 996.7"R, which is greater than 800"R. Hence, a minimum tempera- 
ture will not exist between the two ends. To solve the problem, consider 
T = 800"R. This results in the solution of the problem for  r = 0 to be B s  = 
0 

0.75, A = 0. 5333, 2; L L 
dissipation is calculated to be 1681. 1 Btu/hr. 

= 0. 4104, and g = I. 235. From this the rate of heat 

Example 6. One end of the rod is maintained at 1500"R and the other 
end at 300" R , while the equivalent surrounding sink temperature is 900" R. 
Determine the location along the rod where the temperature is 900"R and the 
rate of heat dissipation to the surroundings. 

Solution. Since one end of the rod is at a temperature higher than the 
surroundings and the other end is at a temperature lower than the surroundings, 
somewhere along the rod the temperature wil l  be the same as the surroundings, 
hence 0 = I. Considering the distance from the 1500"R end to the location 

where the temperature is 900"R to be Ll and the distance from this section to 
S 

the 300"R end to be h, then A = 0.6,  0 = 0.3333 and 
Ll Lz 

= 0.4898 5L1 4- &L2 

= @ . ( A =  1, r = 0 ,  0 = I ,  g) - @ . ( A =  0 .6 ,  r = 0 ,  0 = I ,  g) 

+ A ( 0  = I, r = 0 ,  0 = I ,  g) - A ( 0  = 0. 3333, r = 0,  0 = 1, g) 
S S 

S S 

~ 

To satisfy the above relationship, it can be determined that g = 6. 0. 
gives Ll = 0. 587 feet, the rate of heat dissipated from the 1500"R end is 
1832. 8 Btu/hr, and the rate of heat received by the 300"R end is 1388. 5 Btu/ 
hr .  The rate of heat dissipated to the surroundings is found to be 444. 3 Btu/hr. 

This 

Example 7. A graphite rod 0. 2 cm in diameter and 2. 0 cm long is 
maintained in high vaccuum in an enclosure. 
walls is maintained at 20" C , and an electric current of 26 amperes  is passed 
through the rod. 

The temperature of the enclosure 

Determine the temperature at the center of the rod if the ends 

12 M356 



r 

are kept at 1000°K. 
temperature and are given by E = 0.73, k = 0.72 watts/cm " C ,  p = 6.25  X 

ohm - cm. 

Assume that the properties of graphite are independent of 

Solution. 

w a t t s  a = 0. 5675 X io-" cm2 o c4 

Using 

gives 

12P T 4 = T 4 +  
m s oEPA 

Substituting for the numerical values gives 

( 2 6 ) 2  X 6 . 2 5  X X 4 
0. 5675 X lo-" X 0.73  X ?? X (0. 2 ) 3  T 4 = ( 2 9 3 ) 4 +  m 

= 5. 174011 x l o i 2  

o r  

T = 1508.2"K . in 

Substituting numerical values in 

2oEPT3 

5,=( 5kA O )  

gives 

a lso,  

M356 13 



I 

m - iooo e = 0.663042 e 1000 8 = - -  
1508.2 m 

0 
L T  ( 23) 

Equations (22) and (23) can be solved simultaneously as follows: 

A value of 8 is assumed which allows the calculation of 8 
m L from 

equation ( 2 3 ) .  For the assumed 8 and calculated 8 t; is determined from 

the tables or  graphs. 

culated from equation ( 22) using the assumed 8 

the assumed 8 

value of 8 

pleted. 
of Om = I. 31, which gives the temperature in the center of the rod to be 

m L' L 
The determined value of t; is compared with that cal- 

Xf the two values agree, 
L 

m' 
is correct  and the solution is complete, otherwise a new 

is assumed and the process is repeated until the solution is com- 

Using the above procedure, the solution to this problem gives a value 

m 

m 

1151.3"K. 

Example 8. A tungsten filament 0.00875 cm in diameter and 5 cm long 
is maintained in high vacuum in an enclosure. 
walls is maintained at 20°C and an electric current  of I. 5 amperes  is passed 
through the filament. 
Determine the length of the wire which is practically at uniform temperature. 
Assume that the properties of tungsten a r e  independent of temperature and are 
given by E = 0.50, k = I. 35 watts/cmo K, p = 6 x 

The temperature of the enclosure 

The ends of the filament are maintained at 1000°K. 

ohm-cm. 

Solution. 

oEP ( T  4 - T 4, = q"' = - I'P 
A2 

Using - 
A m S 

gives 

12P T 4 = T 4 +  
m s oEPA , 

Substituting for the numerical values gives 

( 1.5) '  X 6. 0 X X 4 
x 0. 5 x r 2  x ( 0 .  00875) m = ' 293)4 + 0.  5675 x 

= 28.790233 X l oB  . 

14 



Therefore  , 

T = 2316.4'K . m 

Substituting numerical  values in 

2oEPT3 

gL=(  5k.A O )  

gives 

0. 5675 x x 0. 5 X 4 x (2316.4) 
x 2.5  x A 3/2 I M 

5 x I. 35 x 0.00875 

= 5.464041 Am3/2 . 
Also  , 

e =  'Oo0 e = 0.431704 em . 
L 2316.4 m 

If this problem is solved in the same manner  as example 7 ,  it is soon discovered 
that 8 has  to  be less than I. 001. 

and hence the infinite fin solution applies. 
pera ture  is 0.999 T m 
filament is at T For 8 

Hence, it can be assumed that 0 is unity m m 
Determine the point where the tem- 

and consider that  for all pract ical  purpose the rest of the 

= I ,  r = 0 ,  g = 0 ,  it can be determined that at: m' m 

e = 0.431704 , A = 0.257027 

and 

e = 0.999 , A =  2.39100 . 
Hence, 2.185616 AL = 2.39100 - 0.257027 = 2.033973 

or 

A L =  0.930618 cm . 

15 



Therefore, the length of the filament at a temperature between 2314.1"K and 
2316. 4"K, which is practically uniform, is 3. 138765 cm. 

The problems where convection heat t ransfer  as well as radiation is 
present can be handled in the same way as the previous examples. It is 
necessary only to add that, although the solution to the differential equation is 
completed and tabulated, the process of obtaining numerical answers for! 
specific problems are rather  tedious, as has  been illustrated. 

CONCLU S I ON 

The two functions describing the exact general solution to the nonlinear 

The functions allow the solution 
The 

temperature distribution and heat t ransfer  in constant a r e a  fins o r  rods are 
presented in both tabulated and graphic form. 
of the constant area fin problems, assuming constant thermal properties. 
case of fins with internal heat generation can be handled using the same func- 
tions if the heat generation per  unit volume a) is constant, b) var ies  linearly 
with temperature,  c) is proportional to the fourth power of temperature or d) 
var ies  according to a combination of the three cases  above. 

The use of the tables and graphs for  solving specific problems was 
demonstrated by considering sample problems. 
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